Neuer Parameter für Storage: Das Working Size Set


Hauptsache schnell: Hybrid Storage Pools nutzen die jeweiligen Stärken von HDD, SSD und DRAM
Eine Technologie, die die Vorteile von DRAM, SSD und HDD verbindet, ist optimal, um den Flaschenhals Speicher auf Trab zu bringen


Autor Heiko Wüst

Autor Heiko Wüst

Experte für Unix, Linux und Open Source mit langjähriger Erfahrung im Netzwerk-, Storage- und Virtualisierungsumfeld, Bild: Nexenta Systems

(16.01.14) - Speicher ist nicht nur ein teurer Bestandteil des Rechenzentrums, sondern in den meisten Fällen auch ein Flaschenhals, der die Leistung des Gesamtsystems drosselt. Die Fortschritte auf der Prozessorseite waren im letzten Jahrzehnt eben deutlich schneller als auf der Speicherseite. Um den Speicher auf Vordermann zu bringen, setzt man deswegen oft auf SSDs, Flash-Speicher, der schneller ist als Festplatten. Als Massenspeicher im Allgemeinen zu teuer, werden SSDs normalerweise als Cache eingesetzt.

Dabei sind SSDs nicht einmal das derzeit schnelles Speicherchips auf dem Markt - DRAM sind deutlich schneller. Allerdings sind DRAM ein flüchtiges Medium und Datenspeicherung auf einem solchen Träger klingt wenig sicher. Eine Technologie, die die Vorteile von DRAM, SSD und HDD verbindet, wäre optimal, um den Flaschenhals Speicher auf Trab zu bringen. Und diese Technologie gibt es bereits: Hybrid Storage Pooling verbindet die Geschwindigkeit von DRAM mit den Vorzügen von SSD und dem günstigen Massenspeicher HDD. Wie dies funktioniert, und welche Rolle dabei das "Working Size Set" spielt, hat Heiko Wüst, Sales Engineer bei Nexenta Systems, in einem Artikel beschrieben.

Von Heiko Wüst, Sales Engineer Nexenta Systems

Wie balanciert man Kosten und Leistung beim Speicher mit verschiedenen Speichermedien optimal aus? Das wichtigste dabei ist die Konzentration auf das "Working Size Set", also die Daten, die tatsächlich genutzt werden. In den letzten Jahren kristallisierte sich ein Problem moderner Speichersysteme mehr und mehr heraus: Normale Systeme konnten mit dem ungeheuren Bedarf moderner Applikationen nach immer mehr Leistung nicht Schritt halten. Die Leistungsschübe auf der Prozessorseite waren enorm, die Speicherseite ihrerseits stagnierte. Um diese Lücke zu schließen, mussten teure HDDs angeschafft werden um einen moderaten Schub an Leistung in Form von kürzerer Latenzzeit zu erreichen oder es musste mehr Kapazität eingekauft werden als eigentlich nötig war, um die Leistung zu erhöhen.

Eine Möglichkeit, dieses Problem zu lösen, besteht grundsätzlich darin, Flash-Speicher zu nutzen. Jedoch sprechen die hohen Kosten in der Praxis oft dagegen. Nun, da die Preise für Flash langsam fallen, integrieren immer mehr Hersteller von Speicherhardware Flash in ihre Produkte. Ein architektonisch viel sinnvollerer Ansatz, Flash zu nutzen, liegt jedoch im Dateisystem. Dieses sollte verschiedene Speichermedien automatisch, effizient und intelligent nutzen nicht zuletzt, um die hohen Investitionen in Flash-Speicher zu rechtfertigen.

Daten in einem Hybrid Storage Pool werden über den Adaptive Replacement Cache hierarchisch verteilt.

Hybrid Storage Pools holen das Beste aus den Speicherressourcen heraus
Eine Technologie, die es schafft, Flash effizient zu nutzen ist der Hybrid Storage Pool (HSP) im Open Source Dateisystem ZFS. Dieser Pool integriert DRAM, SSDs und rotierende HDDs zu einem einzigen virtuellen beschleunigten Speichermedium. Der Hybrid Storage Pool ist ein Standard in ZFS-basierten Produkten, das man in vielen anderen Dateisystemen vergeblich sucht. Um maximale Effizienz und Performance zu erreichen, werden die Daten in einem Hybrid Storage Pool hierarchisch über drei unterschiedliche Pfeiler verteilt (

DRAM ist die erste Wahl
Die "beste Adresse" für alle geschriebenen Daten in einem solchen Pool ist der schnelle Adaptive Replacement Cache (ARC), der sich im DRAM befindet. Dies ist die Quelle für das Lesen von Daten mit der geringsten Latenz. ZFS prüft bei einer Anfrage nach Daten zuerst, ob sich diese im ARC befinden. Sind diese dort, können sie innerhalb von Nanosekunden gelesen werden und erreichen somit sehr schnell die Anwendung, die die Daten benötigt. Welche Daten innerhalb des ARC vorgehalten werden, entscheidet ZFS automatisch nach den Kriterien "Most Recently Used" (MRU) und "Most Frequently Used" (MFU).

SSD ist zweite Anlaufstation
Der zweite Pfeiler ist das Level 2 ARC" (L2ARC), das aus SSDs besteht. Ohne L2ARC müssten alle Daten, die im ARC keinen Platz finden, von langsamen Festplatten gelesen werden. SSDs überbrücken den Geschwindigkeitsunterschied zwischen DRAM und HDDs, der mehrere Millisekunden beträgt. SSDs sind teurer als HDDs; es ist aber deutlich günstiger, hunderte Gigabyte Flashspeicher in Form von SSDs anzuschaffen, als die gleiche Menge in DRAM. Die I/Os auf SSDs sind zwar langsamer als bei DRAM, der Durchsatz ist jedoch bekanntermaßen deutlich höher als bei Festplatten. Der dritte Pfeiler des Hybrid Storage Pools sind schließlich HDDs. Welche Daten auf der zweiten Cache-Ebene gespeichert werden, entscheiden wiederum intelligente Algorithmen innerhalb von ZFS. Auf den HDDs schließlich befinden sich alle Daten, auch die gecoachten. Dies ist ein entscheidender Unterschied zu Tiered Storage, wo die Originaldaten zwischen schnelleren und langsameren Daten verschoben werden müssen.

Latenzzeiten senken und dabei Datenintegrität garantieren
Ähnlich wie beim Lesen funktioniert der Hybrid Storage Pool auch beim Schreiben. ZFS handhabt mittels Caching die synchronen Schreibvorgänge verschiedener Protokolle (beispielsweise NFS, SMB/CIFS). Die Schreibvorgänge werden im das ZFS Intent Log (ZIL) protokolliert, bis sie an nicht-volatilen Stellen im Speicher abgelegt sind.

Die Latenz von synchronen Schreibvorgängen zu reduzieren, hat einen direkten Einfluss auf die Leistung, denn Datenbanken setzen gewöhnlich voraus, dass Daten auf einem dauerhaften Speicher geschrieben sind, bevor sie den Vorgang abschließen können. Während alle Schreibvorgänge, sowohl synchrone als auch asynchrone, auf DRAM in den ARC geschrieben werden, werden synchrone zusätzlich auch auf den ZIL auf SSD geschrieben.

ZFS bündelt regelmäßig alle neuen Schreibvorgänge im ARC und verteilt diese auf die Festplatten. Ab diesem Moment werden die Protokolle auf dem ZIL nicht länger benötigt und können überschrieben werden, da die Daten ihre finale Stelle auf einem lang-ristigen, nicht-volatilen Medium erreicht haben. Unter normalen Umständen wird das ZIL also nicht benötigt. Es wird nur gelesen, wenn synchrone Schreibvorgänge aus dem ARC nicht auf Festplatte geschrieben werden können, zum Beispiel nach einem Stromausfall oder bei Ausfall eines Controllers. Dann liest ZFS das ZIL und legt die Daten an-schließend wie geplant auf den Festplatten ab. Auf diese Weise ist der Verlust einer Transaktion oder die Inkonsistent zwischen Nutz- oder Paritätsdaten ausgeschlossen. Genau wie ARC und L2ARC wird das ZIL automatisch und intelligent von ZFS verwaltet, ohne jeglichen Eingriff eines Administrators.

Die richtige Balance zwischen Leistung und Kapazität
ARC, L2ARC und ZIL bestimmen im Wesentlichen die Leistung innerhalb eines ZFS Hybrid Storage Pools, da nur sehr wenige Datenzugriffe auf die dahinter liegenden Fest-platten erfolgen. Somit können Festplatten dafür eingesetzt werden, wofür sie am besten geeignet sind: Günstige Speicherkapazität mit hoher Dichte. Eine Balance zu finden zwischen DRAM und Flash für die Performance einerseits und HDDs für die Kapazität andererseits, ist über die Gesamtlaufzeit des Systems gesehen effizienter, als nur Flash und Festplatten zu nutzen. Dies wird so lange gelten, bis Flash und Festplatten auf dem gleichen Preisniveau angekommen sind.

Ein neuer Parameter für Storage: Das Working Size Set
Um die wichtigen Parameter bei herkömmlichen Speichersystemen abzustecken, muss der Administrator Kapazität, IOPS und Datendurchsatz bestimmen. Anhand dieser Zahlen kann er einfach ausrechnen, wie viele Spindeln nötig sind, um auf die gewünschte Leistung zu kommen. Da die Speicherindustrie sich jedoch immer ausgeklügelteren Caching-Methoden in Speichersystemen zuwendet, ist ein neuer Parameter vonnöten, um den Bedarf an Speicher zu bestimmen: Das Working Size Set. Es beschreibt den Teil der Daten, mit dem aktiv gearbeitet wird. Dies ist meist der kleinste Teil des gesamten Datenvolumens. Beispielsweise kann das Working Size Set innerhalb eines Systems von insgesamt 20TB aus 500GB bestehen. Kennt man die Größe, ist es möglich, die Kapazität von ARC, L2ARC und sogar HDDs entsprechend der Bedürfnisse eines Unternehmens zu spezifizieren

Das Working Size Set beschreibt den Teil der Daten mit dem Aktiv gearbeitet wird. Kennt man diese Größe, kann man die Größe der ARCs spezifisch anpassen
Indem sie DRAM, Flash und HDDs intelligent gemeinsam nutzen, können Hybrid Storage Pools die richtige Balance zwischen Kosten und Leistung für jedes Working Size Set bringen. Auch können Hybrid Storage Pools die Notwendigkeit, das Speichersystem durch einen Administrator nach I/O-Engpässen zu überwachen, massiv reduzieren. Der Aufwand für automatisches oder manuelles Tiering der Daten wird hinfällig. Der wichtigste Grund für die Nutzung eines Hybrid Storage Pools ist jedoch die Performance: ZFS Hybrid Storage Pools sind einfach viel schneller als herkömmliche Speichersysteme, da sie die Latenz sowohl für Schreib- als auch Lesevorgänge stark verkürzen.

Der Autor:
Heiko Wüst ist Experte für UNIX, Linux und Open Source mit langjähriger Erfahrung im Netzwerk-, Storage- und Virtualisierungsumfeld. Zu seinen früheren beruflichen Stationen gehören ADIVA und Motorola. Heute arbeitet der Diplomingenieur der Elektrotechnik als Sales Engineer bei Nexenta Systems.
(Nexenta Systems: ra)

Nexenta Systems: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Grundlagen

Welche Spuren interne Täter im Netzverkehr legen

Viele Diskussionen malen gerne den eigenen Mitarbeiter als IT-Sicherheitsrisiko an die Wand. Die tatsächliche Gefahr, die von ihm ausgeht, ist aber oft unklar. Verschiedene Täterprofile interner Angreifer können größeren Schaden anrichten.

Verbesserte IT-Sicherheit und Resilienz

Anlässlich der EU-NATO-Task Force über die Resilienz der Kritischen Infrastruktur (KRITIS) in Europa mehren sich auch in Deutschland die Diskussionen darüber, wie diese bestmöglich geschützt werden kann. Die vier Schlüsselbereiche, die laut des vor Kurzem veröffentlichten EU/NATO-Papiers eine erhöhte Anfälligkeit für Cyber-Angriffe bieten und somit besonders schützenswert sind, sind Energie, Verkehr, digitale Infrastruktur und Weltraum.

KI macht Ransomware noch gefährlicher

Ransomware ist schon längere Zeit ein echtes Problem für Organisationen jeder Art und Größe. Betrachtet man die neuesten Entwicklungen, ist keine Entwarnung in Sicht. Eher im Gegenteil: Die Kriminellen nutzen mittlerweile KI, um ihre Angriffe noch effizienter zu machen.

Von Erpressungsangreifern verwendete Kryptowährungen

Erpressungsangriffe sind eine immer häufiger auftretende Form von E-Mail-Betrug. Hierbei drohen Cyberkriminelle ihren Opfern mit der Veröffentlichung von kompromittierenden Informationen, etwa einem peinlichen Foto, und fordern eine Zahlung in Kryptowährung. Oft kaufen die Angreifer die Anmeldedaten der Opfer oder erlangen sie durch Datenlecks, um zu "beweisen", dass ihre Drohung legitim ist.

Besuchen Sie SaaS-Magazin.de

SaaS, On demand, ASP, Cloud Computing, Outsourcing >>>

Kostenloser Newsletter

Werktäglich informiert mit IT SecCity.de, Compliance-Magazin.de und SaaS-Magazin.de. Mit einem Newsletter Zugriff auf drei Online-Magazine. Bestellen Sie hier

Fachartikel

Grundlagen

Big Data bringt neue Herausforderungen mit sich

Die Digitale Transformation zwingt Unternehmen sich mit Big Data auseinanderzusetzen. Diese oft neue Aufgabe stellt viele IT-Teams hinsichtlich Datenverwaltung, -schutz und -verarbeitung vor große Herausforderungen. Die Nutzung eines Data Vaults mit automatisiertem Datenmanagement kann Unternehmen helfen, diese Herausforderungen auch mit kleinen IT-Teams zu bewältigen. Big Data war bisher eine Teildisziplin der IT, mit der sich tendenziell eher nur Großunternehmen beschäftigen mussten. Für kleinere Unternehmen war die Datenverwaltung trotz wachsender Datenmenge meist noch überschaubar. Doch die Digitale Transformation macht auch vor Unternehmen nicht halt, die das komplizierte Feld Big Data bisher anderen überlassen haben. IoT-Anwendungen lassen die Datenmengen schnell exponentiell anschwellen. Und während IT-Teams die Herausforderung der Speicherung großer Datenmengen meist noch irgendwie in den Griff bekommen, hakt es vielerorts, wenn es darum geht, aus all den Daten Wert zu schöpfen. Auch das Know-how für die Anforderungen neuer Gesetzgebung, wie der DSGVO, ist bei kleineren Unternehmen oft nicht auf dem neuesten Stand. Was viele IT-Teams zu Beginn ihrer Reise in die Welt von Big Data unterschätzen, ist zum einen die schiere Größe und zum anderen die Komplexität der Datensätze. Auch der benötigte Aufwand, um berechtigten Zugriff auf Daten sicherzustellen, wird oft unterschätzt.

Bösartige E-Mail- und Social-Engineering-Angriffe

Ineffiziente Reaktionen auf E-Mail-Angriffe sorgen bei Unternehmen jedes Jahr für Milliardenverluste. Für viele Unternehmen ist das Auffinden, Identifizieren und Entfernen von E-Mail-Bedrohungen ein langsamer, manueller und ressourcenaufwendiger Prozess. Infolgedessen haben Angriffe oft Zeit, sich im Unternehmen zu verbreiten und weitere Schäden zu verursachen. Laut Verizon dauert es bei den meisten Phishing-Kampagnen nur 16 Minuten, bis jemand auf einen bösartigen Link klickt. Bei einer manuellen Reaktion auf einen Vorfall benötigen Unternehmen jedoch circa dreieinhalb Stunden, bis sie reagieren. In vielen Fällen hat sich zu diesem Zeitpunkt der Angriff bereits weiter ausgebreitet, was zusätzliche Untersuchungen und Gegenmaßnahmen erfordert.

Zertifikat ist allerdings nicht gleich Zertifikat

Für Hunderte von Jahren war die Originalunterschrift so etwas wie der De-facto-Standard um unterschiedlichste Vertragsdokumente und Vereinbarungen aller Art rechtskräftig zu unterzeichnen. Vor inzwischen mehr als einem Jahrzehnt verlagerten sich immer mehr Geschäftstätigkeiten und mit ihnen die zugehörigen Prozesse ins Internet. Es hat zwar eine Weile gedauert, aber mit dem Zeitalter der digitalen Transformation beginnen handgeschriebene Unterschriften auf papierbasierten Dokumenten zunehmend zu verschwinden und digitale Signaturen werden weltweit mehr und mehr akzeptiert.

Datensicherheit und -kontrolle mit CASBs

Egal ob Start-up oder Konzern: Collaboration Tools sind auch in deutschen Unternehmen überaus beliebt. Sie lassen sich besonders leicht in individuelle Workflows integrieren und sind auf verschiedenen Endgeräten nutzbar. Zu den weltweit meistgenutzten Collaboration Tools gehört derzeit Slack. Die Cloudanwendung stellt allerdings eine Herausforderung für die Datensicherheit dar, die nur mit speziellen Cloud Security-Lösungen zuverlässig bewältigt werden kann. In wenigen Jahren hat sich Slack von einer relativ unbekannten Cloud-Anwendung zu einer der beliebtesten Team Collaboration-Lösungen der Welt entwickelt. Ihr Siegeszug in den meisten Unternehmen beginnt häufig mit einem Dasein als Schatten-Anwendung, die zunächst nur von einzelnen unternehmensinternen Arbeitsgruppen genutzt wird. Von dort aus entwickelt sie sich in der Regel schnell zum beliebtesten Collaboration-Tool in der gesamten Organisation.

KI: Neue Spielregeln für IT-Sicherheit

Gerade in jüngster Zeit haben automatisierte Phishing-Angriffe relativ plötzlich stark zugenommen. Dank künstlicher Intelligenz (KI), maschinellem Lernen und Big Data sind die Inhalte deutlich überzeugender und die Angriffsmethodik überaus präzise. Mit traditionellen Phishing-Angriffen haben die Attacken nicht mehr viel gemein. Während IT-Verantwortliche KI einsetzen, um Sicherheit auf die nächste Stufe zu bringen, darf man sich getrost fragen, was passiert, wenn diese Technologie in die falschen Hände, die der Bad Guys, gerät? Die Weiterentwicklung des Internets und die Fortschritte beim Computing haben uns in die Lage versetzt auch für komplexe Probleme exakte Lösungen zu finden. Von der Astrophysik über biologische Systeme bis hin zu Automatisierung und Präzision. Allerdings sind alle diese Systeme inhärent anfällig für Cyber-Bedrohungen. Gerade in unserer schnelllebigen Welt, in der Innovationen im kommen und gehen muss Cybersicherheit weiterhin im Vordergrund stehen. Insbesondere was die durch das Internet der Dinge (IoT) erzeugte Datenflut anbelangt. Beim Identifizieren von Malware hat man sich in hohem Maße darauf verlassen, bestimmte Dateisignaturen zu erkennen. Oder auf regelbasierte Systeme die Netzwerkanomalitäten aufdecken.

DDoS-Angriffe nehmen weiter Fahrt auf

DDoS-Attacken nehmen in Anzahl und Dauer deutlich zu, sie werden komplexer und raffinierter. Darauf machen die IT-Sicherheitsexperten der PSW Group unter Berufung auf den Lagebericht zur IT-Sicherheit 2018 des Bundesamtes für Sicherheit in der Informationstechnik (BSI) aufmerksam. Demnach gehörten DDoS-Attacken 2017 und 2018 zu den häufigsten beobachteten Sicherheitsvorfällen. Im dritten Quartal 2018 hat sich das durchschnittliche DDoS-Angriffsvolumen im Vergleich zum ersten Quartal mehr als verdoppelt. Durchschnittlich 175 Angriffen pro Tag wurden zwischen Juli und September 2018 gestartet. Die Opfer waren vor allem Service-Provider in Deutschland, in Österreich und in der Schweiz: 87 Prozent aller Provider wurden 2018 angegriffen. Und bereits für das 1. Quartal dieses Jahres registrierte Link11 schon 11.177 DDoS-Angriffe.

Fluch und Segen des Darkwebs

Strengere Gesetzesnormen für Betreiber von Internet-Plattformen, die Straftaten ermöglichen und zugangsbeschränkt sind - das forderte das BMI in einem in Q1 2019 eingebrachten Gesetzesantrag. Was zunächst durchweg positiv klingt, wird vor allem von Seiten der Bundesdatenschützer scharf kritisiert. Denn hinter dieser Forderung verbirgt sich mehr als nur das Verbot von Webseiten, die ein Tummelplatz für illegale Aktivitäten sind. Auch Darkweb-Plattformen, die lediglich unzugänglichen und anonymen Speicherplatz zur Verfügung stellen, unterlägen der Verordnung. Da diese nicht nur von kriminellen Akteuren genutzt werden, sehen Kritiker in dem Gesetzesentwurf einen starken Eingriff in die bürgerlichen Rechte. Aber welche Rolle spielt das Darkweb grundsätzlich? Und wie wird sich das "verborgene Netz" in Zukunft weiterentwickeln? Sivan Nir, Threat Analysis Team Leader bei Skybox Security, äußert sich zu den zwei Gesichtern des Darkwebs und seiner Zukunft.

Diese Webseite verwendet Cookies - Wir verwenden Cookies, um Inhalte und Anzeigen zu personalisieren, Funktionen für soziale Medien anbieten zu können und die Zugriffe auf unsere Website zu analysieren. Außerdem geben wir Informationen zu Ihrer Verwendung unserer Website an unsere Partner für soziale Medien, Werbung und Analysen weiter. Unsere Partner führen diese Informationen möglicherweise mit weiteren Daten zusammen, die Sie ihnen bereitgestellt haben oder die sie im Rahmen Ihrer Nutzung der Dienste gesammelt haben. Mit dem Klick auf „Erlauben“erklären Sie sich damit einverstanden. Weiterführende Informationen erhalten Sie in unserer Datenschutzerklärung.